Arene Complexes of Al(C₆F₅)₃. Relationship to a Déjà Vu Silylium Ion

Gregory S. Hair, Alan H. Cowley,* Richard A. Jones,* Brian G. McBurnett, and Andreas Voigt

> Department of Chemistry and Biochemistry The University of Texas at Austin Austin, TX 78712

> > Received February 11, 1999

Once somewhat of a curiosity,¹ the potent Lewis acid, $B(C_6F_5)_3$, has become a compound of practical importance due largely to its role as a cocatalyst for olefin polymerization.² However, information on the analogous aluminum compound, Al(C₆F₅)₃, is much more sparse,^{3,4} although Lewis acid behavior is manifested by the isolation of a THF complex³ and a titanium aluminate zwitterion.5

One of the noteworthy developments over the past 5-6 years has been the isolation and structural assay of silvlium (silicenium) ions, $[SiR_3]^+$, the earliest examples of which feature $R = Et^6$ or *i*-Pr.⁷ In neither case, however, is the silvlium ion "free," being coordinated to toluene when R = Et and to one of the bromines of the carboranyl gegenion in the other.⁸ Alanes are isoelectronic with silvlium ions; moreover, aluminum is considerably more electropositive than silicon (Pauling electronegativities: Al, 1.61; Si, 1.90). Hence it occurred to us that $Al(C_6F_5)_3$ might coordinate to arenes in a fashion similar to $[SiEt_3]^+$

Equimolar mixtures of $B(C_6F_5)_3$ and AlMe₃ were allowed to react anaerobically in either benzene or toluene solutions at 25 °C for 12 h, following which the reaction mixtures were filtered.9 Concentration of the filtrates afforded single crystals of $Al(C_6F_5)_3$. benzene $(1)^{10}$ and Al(C₆F₅)₃·toluene $(2)^{10}$ suitable for study by X-ray diffraction.¹¹ Compounds 1 and 2 both crystallize in the

(1) (a) Massey, A. G.; Park, A. J.; Stone, F. G. A. Proc. Chem. Soc., London
1963, 212. (b) Massey, A. G.; Park, A. J. J. Organomet. Chem. 1964, 2, 245.
(c) Massey, A. G.; Park, A. J. J. Organomet. Chem. 1966, 5, 218.
(2) Piers, W. E.; Chivers, T. Chem. Soc. Rev. 1997, 26, 345.

(3) Belgardt, T.; Storre, J.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. Inorg. Chem. 1995, 34, 3821.

(4) Biagini, P.; Gabrieli, L.; Andreussi, P. European Patent Application EP 694, 548, January 31, 1996.

(5) Cowley, A. H.; Hair, G. S.; McBurnett, B. G.; Jones, R. A. Chem. Commun. 1999, 437

(6) Lambert, J. B.; Zhang, S.; Stern, C. L.; Huffman, J. C. Science 1993, 260, 1917.

(7) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. Science 1993, 262, 402.

(8) For a free silylium ion, see the following: Lambert, J. B.; Zhao, Y. Angew. Chem., Int. Ed. Engl. 1997, 36, 400.

(9) Although we have not encountered any problems, caution should be excercised when handling Al(C₆F₅)₃ since detonations have been reported at Exception of the intermediate and the

$$\begin{split} &\delta - 123.1 \ (\text{m, }o\text{-F, }6\text{F}), -150.8 \ (\text{m, }p\text{-F, }3\text{F}), -160.6 \ (\text{m, }m\text{-F, }6\text{F}); \, ^{27}\text{A}1 \ \text{NMR} \\ &(78.21 \ \text{MHz}, \ \text{C}_6\text{D}_6) \ \delta \ 52 \ (\text{s, br, } w_{1/2} = 6257 \ \text{Hz}). \ \textbf{2}; \ \text{yield} \ 74\%; \ \text{mp} \ 120 - 122 \\ &\text{°C; }^{19}\text{F} \ \text{NMR} \ (282 \ \text{MHz}, \ \text{C}_6\text{D}_6) \ \delta \ -121.2 \ (\text{m, }o\text{-F, }6\text{F}), -149.0 \ (\text{m, }p\text{-F, }3\text{F}), \end{split}$$
-158.8 (m, *m*-F, 6F); ²⁷Al NMR (78.21 MHz, C₆D₆) δ 61 (s, br, $w_{1/2} = 6400$ Hz)

(11) Crystal data for 1: $C_{27}H_9AlF_{15}$, triclinic, $P\bar{1}$, a = 7.408(1), b = 1.378-(1), c = 15.606(1) Å, $\alpha = 73.70(1)$, $\beta = 78.49(1)$, $\gamma = 84.74(1)^\circ$, V = 1236.3-(2) Å³, Z = 2, $D_{calcd} = 1.734$ g cm⁻³, μ (Mo K α) = 2.13 cm⁻¹. Crystal data for 2: C₂₅H₈AlF₁₅, triclinic $P\overline{1}$, a = 7.427(2), b = 11.612(3), c = 13.822(4) Δ , α = 92.08(2), β = 102.61(2), γ = 101.95(2)°, V = 1133.9(5) Å³, Z = 1, D_{calcd} = 0.908 g cm⁻³, μ (Mo Kα) = 0.114 mm.⁻¹ Suitable single crystals of 1 and 2 were covered with mineral oil and mounted on a Siemens P4 diffractometer at 173(2) K. Totals of 6355 and 7138 reflections were collected in the ranges $4.0 < 2\theta < 55.0^{\circ}$ and $3.04 < 2\theta < 60^{\circ}$ for 1 and 2, respectively, using Mo K α radiation ($\lambda = 0.71073$ Å). Of these, 5463 and 5834 reflections were considered observed for 1 and 2, respectively ($I > 2.0 \sigma$ (I)). Both structures were solved by direct methods and refined by full matrix, least squares methods. Final *R* values: 1, $R_{w2} = 0.1495$, R = 0.0844; 2, $R_{w2} =$ 0.1076, R = 0.0347.

Figure 1. Molecular structure of $Al(C_6F_5)_3$ toluene (2) showing the atomnumbering scheme. Important parameters (with the corresponding parameters for $Al(C_6F_5)_3$ benzene (1) shown in parentheses): Al(1)-C(1), 1.9836(14) Å (1.976(7) Å); Al(1)-C(7), 1.9812(14) Å (1.976(6) Å); Al(1)-C(13), 1.988(2) Å (1.986(7) Å); Al(1)-C(19), 2.366(2) Å (2.342(6) Å); C(1)-Al(1)-C(7), 117.18(6)° (107.9(3)); C(1)-Al(1)-C(13), 108.44(6)° (117.0(3)°); C(7)-Al(1)-C(13), 114.51(6)° (116.8-(3)°); C(1)-Al(1)-C(19), 107.98(6)° (105.4(3)°); C(7)-Al(1)-C(19), 104.39(6)° (103.9(3)°); C(13)-Al(1)-C(19), 103.12(6)° (104.2(2)°).

triclinic space group P1. In the case of 1, there is one crystallographically unique molecule of $Al(C_6F_5)_3$ benzene per asymmetric unit, along with half a molecule of uncoordinated benzene; the crystalline state of 2 is similar but without the extra half molecule of solvent. There are no unusually close intermolecular contacts in 1 or 2. All the hydrogen atoms were located in the structure of 2; for 1, the hydrogen atoms were placed in idealized positions.

In both **1** and **2** the arene is coordinated in an η^1 fashion, and the conformations of both molecules are very similar (Figure 1). As in the case of $[SiEt_3 \cdot toluene]^+$ (3),⁶ the toluene molecule in 2 is attached in the para position. The Al-C(arene) distances in 1 and 2 are 2.342(6) and 2.366(2) Å, respectively, which is 0.28-0.30 Å longer than the sum of covalent radii for these elements. For comparison, the Si-C(toluene) distance in **3** is 0.24 Å longer than the sum of the Si and C covalent radii.⁶ Use of the Pauling bond length equation¹² gives an estimated bond order of 0.3 for the Al-C(arene) bonds in 1 and 2. The nature of the arene bonding in 1 and 2 can be discussed in terms of two canonical forms, A and B, (Scheme 1) in a manner similar to that reported for 3^{13} and the Ag⁺ complex of benzene.¹⁴ Structure A is a π -arene complex¹⁵ and features an sp^2 carbon, while structure **B**, with an sp³ carbon, is a σ complex or Wheland intermediate;¹⁶ the Al- $\hat{C}-C_{para}$ angles for **A** and **B** are 90 and 125°, respectively. The experimentally determined bond angles of 99.1 and 96.1° for 1 and 2, respectively, are therefore closer to those for structure A which involves idealized sp² hybridization. A slight perturbation of the arene ring was detectable in the case of 2 in the sense that

(12) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p 255. (13) Reed, C. A.; Xie, Z. Science **1994**, 263, 984

(14) Shelly, K.; Finster, D. C.; Lee, Y. J.; Scheidt, R.; Reed, C. A. J. Am. Chem. Soc. 1985, 107, 5955

(15) For hexahapto π -type interactions between arenes and an iminophosphenium cation and related systems, see the following: Burford, N.; Clyburne, J. A. C.; Bakshi, P. K.; Cameron, T. S. Organometallics 1995, 14, 1578, and references therein.

(16) For recent structural data on the chlorohexamethylbenzene cation, see Rathore, R.; Hecht, J.; Kochi, J. K. J. Am. Chem. Soc. 1998, 120, 13278. Such cations were first observed by Olah and co-workers. See, for example: Olah, G. A.; Lin, H. C.; Mo, Y. K. J. Am. Chem. Soc. 1972, 94, 3667.

the average bond distance for C(20)-C(21) and C(23)-C(24) (1.386(2) Å) is shorter than that for the remaining C-C bonds (1.400(2) Å).

The interactions with the arene molecules are also evident from the metrical parameters of the Al(C_6F_5)₃ fragment. The sums of bond angles at aluminum are 341.7(3) and 340.13(6)° in **1** and **2**, respectively, thus indicating a significant tetrahedral distortion of the AlC₃ trigonal plane¹⁷ upon complexation. Interestingly, the average C-Al-C bond angles in **1** (113.9(3)°) and **2** (113.38-(6)°) are identical to that in Al(C_6F_5)₃·THF (**4**)³ (113.58(10)°), as are the average Al-C bond distances within experimental error (1.979(7), 1.984(2), and 1.995(3) Å in 1, 2, and 4, respectively). The tetrahedral distortions in 1 and 2 are also very similar to that in 3^6 as reflected by the average C-Si-C bond angle of 114°.

The interactions between the arenes and Al(C_6F_5)₃ are sufficiently strong that complexes **1** and **2** persist in solution. Thus, the ¹H NMR spectrum of **1** in C_6D_6 solution exhibits a complex pattern in the aromatic C–H region (peaks observed at δ 6.99, 7.01, 7.05, 7.07, 7.11, and 7.13) as expected for an η^1 -benzene. Addition of approximately 5 equiv of THF to a solution of **1** in C_6D_6 results in displacement of the coordinated benzene and formation of the known³ complex, **4**. Interestingly, the coordinated benzene of **1** is not displaced by Et₂O as evidenced by ¹H NMR spectroscopy. These observations imply the sequence of donor strengths, THF > benzene > Et₂O, toward Al(C_6F_5)₃. Complexes **1** and **2** also retain their integrity in the vapor phase since peaks corresponding to the molecular ions are detectable at m/z 606.3 (**1**) and 620.3 (**2**) in the negative ion CI mass spectra.

Acknowledgment. We are grateful to the National Science Foundation and the Robert A. Welch foundation for financial support.

Supporting Information Available: X-ray experimental details with positional parameters and full bond distances and angles for 1 and 2. This material is available free of charge via the Internet at http://pubs.acs.org.

JA9904336

⁽¹⁷⁾ The structure of uncomplexed Al(C_6F_5)₃ has not been reported. However, the structure of Al(mesityl)₃ is known, and the AlC₃ unit is planar with the mesityl groups arranged in a propeller-like fashion around the trigonal axis. Jerius, J. J.; Hahn, J. M.; Magsudur Rahman, A. F. M.; Mois, O.; Ilsey, W. H.; Oliver, J. P. *Organometallics* **1986**, *5*, 1812.